Contextual Challenges survey; the responses

A couple of weeks ago David invited English teachers of D&T GCSE to contribute to a short survey asking if and how they have they have changed their curriculum at KS3 and 4 to reflect the demands of the new GCSE and, in particular, its non-examined element, the Contextual Challenge.

Frankly, given how busy teachers are, we weren’t at all sure whether even a very short survey would get much of a response, so we are delighted that 41 colleagues have taken the time to do so; thank you very much!

We think the responses are of interest and the purpose of this post is to simply present the data from the survey without commentary or analysis.  As the original request noted, David and I will be including this data in a paper we are presenting at the PATT 36 conference in June. After that conference we will make the full paper available on this site and let everyone know that it’s available.

[Incidentally, we are working on this paper over the next few weeks – so if anyone else would like to respond to the survey, there’s still time (say until the end of this week) to have your data inform the final paper – if you manage to do this, thank you in advance.]

The survey had just two questions:

  1. What changes have you made to your KS3 D&T curriculum to prepare pupils for the new D&T GCSE? 
  2. What changes have you made to your KS4 D&T curriculum to prepare pupils for the new contextual challenge NEA?

Here are the results. [Click images for a full size version.]

The responses under ‘Other’ for Q1 were:

  • More focus on coverage. Start covering simple D&T theory in the early year. The amount to get through in 2 years (years 10 & 11) means you have to start teaching lower down the school.
  • Removed carousels – one teacher for all disciplines
  • Changes have been made due to budget cuts – not curriculum change. less making, I can’t afford materials and machines are breaking and not being replaced.
  • My sow (carousel) is now loads of mini projects covering a wide range of outcomes – theory lessons are also interactive with a practical element – homework assignments are evidencing how students use their outcomes through photo stories and story boards.
  • Home learning tasks have included more theoretical elements – we’ll revise our projects at the end of this year.
  • Spent more time on theory than I would usually do early on in a course to ensure they get all the time needed when the NEA kicks in. Was in danger of losing them at one point… Became to theory lead. Quickly reverted back to designing exercises and skills lesson inputs. I have not got the balance right yet re the course (AQA) ,. 1st year… Suppose it’s to be expected. Little support re NEA etc from exam board.
  • Bigger focus on client.
  • I don’t have a KS3 I teach in a UTC.
  • Struggling to make the changes necessary with an inexperienced department. Sticking with old fashioned design, make, evaluate ks3 projects. There is then an upskill in year 9 and 10 so they’re ready for year 11.

The responses under ‘Other’ for Q2 were:

  • My design tasks at GSCE have always been open. I rarely restrict students to a particular project. A range of projects creates a stimulus for the group, a collective problem solving focus and generates different outcomes.
  • Completely revamped the delivery of theory. Will tackle the NEA when we are closer to the release date and time.
  • Focussed yr10 on core theory
  • Small focused tasks and recorded range of skills and materials and lots of theory
  • More small fpt’s.
  • A mock NEA with year 10’s. Constant feedback through Google classroom
  • More small theory based makes to make the content less dry
  • Have done a lesson giving them a myriad of contexts and then asked them to research possible design opportunities / different briefs.
  • Add more theory components that cover core and in-depth of 2 materials. Have attempted to use maths activities from exemplars across exam boards. We also test theory knowledge weekly
  • Shorter design and make tasks to cover different core materials.
  • Focus practical tasks on processes and materials
  • More focus on theory within year 10. Only short practicals due to feeling there’s less time for NEA
  • I’ve tried to focus on areas of weakness/no links will be made in, if there isn’t a ‘pointed out’ element to it. Each small term is spent on 1 area of focus – t4 is currently mechanisms/cams/levers/gears etc

As ever, we’d be delighted to hear people’s thoughts on these responses via the comments.

Advertisements

Non-Examined Assessment; should we be worried?

I imagine most readers know at least the outline of the recent changes to the place of non-examined assessment (NEA) in Computer Science (CS). In short, Ofqual gave notice to schools in November 2017 that they were initiating a consultation on the place of NEA in CS following reports that ‘answers’ to the NEA were widely available on the web. Schools were advised that the core of the consultation was that the NEA would no longer count towards the final grade. At the time of the announcement many y11s following the course had already finished work on the NEA, many others were in the midst of doing it and the rest were soon to start; I think it’s fair to say that the announcement was met with, to say the least, frustration by both teachers and students.

In January the results of the consultation were announced with Ofqual saying

The responses have not persuaded us there is a better model to that we proposed in the consultation.

That model being, in short, that students taking their GCSE computer science exams in 2018 and 2019 should continue to complete one of the tasks set by their exam board for the qualification, but that the task would not contribute to the final exam grade.

I think this development is worth digging into as it’s not hard to imagine possible knock-on effects for D&T.

In particular, two aspects seem to be worth exploring: the first, and obvious one, is whether NEA more generally is under threat, the second is the implied expansion of the role of the awarding organisations from describing what students will be assessed on in a particular specification to detailing how they should be taught.

Should awarding organisations tell teachers how to teach?

Taking the second of these first, it seems to me to be an unwelcome development that a teacher should be placed in the position of being required to include a (non-assessed) task set by an awarding organisation in their scheme of work. This is what is set out:

Schools must give their students an opportunity to undertake the non-exam assessment tasks set by their exam boards and set 20 hours aside in the timetable to allow them to undertake the task. Exam boards must receive from each school a statement confirming they made such provision. This would make sure that all students have had an opportunity to develop the skills and apply their knowledge and understanding of the subject and go some way to making sure all students have a similar experience, regardless of whether they had yet to start, were part way through, or had completed the task when the changed arrangements were introduced.

Not only that, but, prompted by responses to the consultation suggesting “that if schools were required to confirm they had given all of their students the opportunity to complete the task some would, effectively, fabricate any such a statement“, Ofqual is now requiring awarding organisations

to divert the resources they would otherwise have put into moderating teachers’ marking to ensuring all students (are) given the required opportunities to compete (sic) the task. […] a school or college that was found to have made a false statement about the opportunities would be investigated by the relevant exam board under its malpractice procedures.

This seems extraordinary to me. Do we really want the awarding organisations deciding for teachers how they should organise elements of their teaching? With a malpractice threat if they fail to do so?

It looks very much like the thin end of a potentially very thick wedge. And if you think that’s paranoid then note that the Ofqual document points out

There are other GCSE subjects for which schools are required to make a statement confirming students have been given an opportunity to undertake an essential element of the qualification, such as in GCSE geography.

So, it’s actually a wedge with a thin end in Geography that’s now being hammered further into the curriculum.

Responses from teachers of CS seem to have ranged from ‘makes no difference to me because of course I would include a task like this – in fact I include lots of such tasks as a core part of my teaching’, to ‘my kids hated the task and found it very demotivating; I have other ways to teach the material that work better in my setting’. And that, of course, is the point; teachers should be free to use their professional judgement to decide how best to prepare their particular students, in their particular setting, for a GCSE.

Is there a general threat to NEA?

Turning to the possible threat to coursework, it’s worth making clear that this change of rules was, ostensibly, prompted by growing evidence of malpractice

During autumn 2017, we saw evidence that the rules for the GCSE (9 to 1) computer science non-exam assessment tasks were being broken. The tasks had been released by the exam boards on 1 September 2017, for completion by students taking their exams in summer 2018. The tasks should not have been discussed outside of the controlled conditions under which they were completed. However, the tasks, which students had to complete by March 2018, quickly appeared, in full or part, on-line and were widely discussed, advice offered and solutions developed. The speed with which the tasks appeared on-line and the number of times the discussions and solutions were viewed threatened the integrity of this aspect of the qualification.

One can understand Ofqual’s concern. However, two other factors appear to have been in play and these have not been as widely discussed. The first of these is that, because CS counts as a science in the government’s accountability measures

Our decision, taken in 2014, to allow non- exam assessment in the qualification was finely balanced.

A cynic might wonder if they were looking for an excuse to remove the NEA.

The second is that Ofqual

heard from stakeholders that some teachers were finding the non-exam assessments difficult to manage (they were not permitted to discuss the tasks with colleagues outside of their own centre, for example).

In fact, the consultation quotes the Royal Society report After the reboot: computing education in UK schools in saying

Finally, many teachers in England, Wales and Northern Ireland raised the new Non Examined Assessment arrangements for GCSE computer science qualifications as a cause for concern. These teachers felt that the new rules on GCSE Non-Examined Assessment (NEA) are onerous, and consume a disproportionate amount of teacher time and teaching opportunities in the computer science GCSE

I think one has to take these teachers’ views at face value. If the NEA had been kept one might have had sympathy while arguing that the specification is what it is, and teachers have little choice but to work with it – perhaps while lobbying for considered change in the future. But it seems extraordinary to use this as argument to support eliminating the NEA while keeping exactly the same (‘onerous’ but non-assessed) task in place!

More broadly, we know that when the GCSEs were revised the initial position of the government was that coursework was to be removed from all qualifications. It seemed that in an argument between validity and reliability in assessment the reliability of exams was being set against the validity, for many aspects of many subjects, of coursework. One suspects that a strong driver for this is that GCSEs are now as much about measuring schools’ performance as that of pupils; the quote above from Ofqual about the place of CS as a ‘science’ subject supports this view.

So, it was seen as a victory when some subjects fought for and regained NEA. Though one senior examiner pointed out to me that the fact that Art and Design had gained 100% coursework could simply be seen as a measure of the (low) value placed on the subject by ministers at the time. By extension, D&T’s 50% NEA might also be seen as a measure of the subjects slightly higher low worth.

(Just to be clear, I am definitely not arguing that the way to raise the profile of D&T in ministers’ eyes is to relinquish coursework. We’ve made the case for Re-building D&T that developing both technological capability and technological perspective are at the heart of the subject – and you can’t measure all the dimensions of capability through a written exam.)

HMCI Amanda Spielman made some comments about science practical work in a speech to the ASE in January that may be relevant.

Where we still have a live and worthwhile debate is on the role of practical science in the curriculum. This point is demonstrated in John Holman’s Gatsby report on ‘Good practical science’, which I believe is being discussed a great deal at this conference. His report identifies 5 purposes of practical science: to teach the principles of scientific enquiry, improve understanding of theory, to teach practical skills, to motivate and engage students and to develop teamwork skills. His preliminary survey finds that teachers rate the use of practical science for teaching scientific enquiry and practical skills as the least important of those 5. They rate motivation as the most important.

But we should be uncomfortable with the idea of practical science being mainly about motivation. Yes, children should find experiments fun and motivating, but making sure children finish practical tasks having learned something or having consolidated what they have just been taught, is most important. And we know that there are limits to the extent to which skills such as teamwork and enquiry can be developed in isolation.

More generally I think we are still learning what can and can’t be achieved through practical science work, and how this varies at different ages. I am watching this space with great interest. But we do know that scientific understanding is cumulative, and so children need knowledge and understanding before they can create and test hypotheses. Good schools understand this.

It’s hard not to read in between the lines that there is some suspicion at high levels in the education system of the educational value of practical work. Especially as the speech gives no weight to the other, more knowledge-focussed, purposes for practical work. If so, it’s not hard to see how this might reveal itself in suspicion of the value of assessing aspects of practical work in NEAs.

As one would expect, Holman’s report is far subtler than the above suggests and the quoted finding was based on the views of expert witnesses (not teachers) outside England. So, the report certainly doesn’t claim that science teachers in England do in fact value the motivational purpose of practical science more highly than other purposes.

Implications for D&T NEA

It is absolutely clear that keeping an NEA element of assessment in D&T is fundamental to reflecting the nature of the subject (developing technological capability and perspective); if an aim of our subject is developing designer-maker capability then that needs to be assessed and the only valid way to assess it is through some form of NEA. In my view, the current approach of using a Contextual Challenge offers real strengths here. Although the challenge is set by the awarding organisations the context has to be explored by candidates to identify an issue/problem that they consider significant and worthy of responding to via designing and making. This is a far cry from responding to a design brief set by an awarding organisation. It gives both choice of the activity and ownership of the activity to the candidate and this should enable young people to develop a sense of designerly responsibility in the way they respond, as previously explored by David.

If the NEA was removed it would be inevitable that what is taught would evolve to match the demands of the written exam (however good the intentions of teachers, in the end accountability is king), and that would mean, at the very least, a diminished focus on practical capability. It would rapidly become a different subject, even if the name stuck.

The cynic in me is genuinely concerned that there is pressure ‘from above’ to minimise NEA. If so, we can assume that any evidence of malpractice will be seized on enthusiastically as an excuse to eliminate NEA – as we have just seen happen to CS; it’s not clear to me that, in the case of CS, any real effort was put into looking for ways to reduce malpractice, which would have been the case if the NEA was highly valued.

I do think that a Contextual Challenge will be much harder to game than the CS NEA was; while it’s not hard to envisage that many students’ solutions to a programming challenge in CS could look very similar (in fact it might be hard for them not to look similar), it’s very hard to imagine a similar situation emerging in response to a contextual challenge.

So, to avoid the possibility of losing our NEA, with its particular framing as a Contextual Challenge, as a community of practice we need:

  • To be on the ball about identifying attempts to game the Contextual Challenges.
  • To ensure that, if (or when – our young people are marvellously inventive when they need to be…) we do find evidence of cheating of this kind, we are very open about it and proactive in identifying solutions before an unwanted solution is imposed.
  • To make it the normal expectation that the artefacts that emerge in response to a Contextual Challenge will vary widely as pupils answer in their own ways the design questions that arise. Assuming that children in KS3 are also presented with open design challenges as a part of their learning journey towards GCSE, then we should have a similar expectation of diversity in outcomes.
  • To make sure that all D&T teachers are properly prepared to help pupils work in this newly open approach; this would be a very useful focus of support from the awarding bodies.

As ever comments are welcome.

 

Teaching about new and emerging technologies in design and technology

A guest post by Harry Gowlett

With the changes that have been made to design and technology at GCSE level and the introduction of the single GCSE Design and Technology qualification, it has now become a priority to modernise the secondary D&T curriculum at school level. Whilst GCSE D&T most probably will remain a priority to many departments, it is also important to modernise and update the way in which we teach D&T at key stage three. This is especially important in order to engage learners in wanting to continue to study the subject for GCSE and to revitalise the subject, leading to an increase in uptake.

I am a newly qualified teacher having completed my training at Nottingham Trent University on the BSc Secondary Design and Technology Course with QTS. I now realise just how well this course prepared me for my career as a secondary D&T teacher within the education sector. The main focus of the course was to prepare me to deliver a modernised D&T curriculum, alongside learning the practical skills needed to teach the subject. Since leaving university I have now started a job at Sewell Park Academy (@SewellPark), which is a small city academy in Norwich. Due to the size of department I have been lucky enough to work alongside my head of department to introduce a range of new projects at key stage three taking into account my pedagogical knowledge learnt at university. These projects all fit into four main areas of D&T: mainly making, mainly designing, designing and making and D&T in society.

One of the projects that I have introduced to key stage three is about new and emerging technologies. The National Curriculum for D&T at key stage three states that learners should investigate new and emerging technologies. This fitted into my long-term planning for key stage three as a D&T in society project, and as a smaller three-week project. This project also helped to make the learners realise that not every D&T project leads to producing a physical 3D product, something that I feel learners now tend to assume and expect in our subject.

During week one of the project learners are introduced to the project and the practicalities of it are outlined. At my current school learners in key stage three receive two hour-long lessons of D&T a week. Lesson one involved learners watching a range of video clips and participating in small group and whole class discussions about various new and emerging technologies. Whilst taking part in these discussions the learners would also develop their note making skills, helping to develop literacy skills. Lesson two would involve learners deciding on their favourite new/emerging technology and then being organised into teams to investigate their technology in more detail.

Week two is the fully learner-centred set of lessons, where each team would research their technology. This can be achieved in a number of ways, if computers are available internet research is always a popular choice. To aid differentiation, I produced a set of resource packs for each technology using real life articles and suitable pieces of information. For lower ability learners, I would highlight key points, and the higher ability members of the class would be able to synthesise the information themselves. The class would be guided during the second lesson of the week to focus their research on a given criterion (ready to prepare a presentation).

In the third and final week of the project the learners firstly focus on producing a team presentation to share with the rest of the class. This should hopefully be achievable during an hour-long lesson as the research completed during week two has been narrowed down and homework opportunities have been utilised. Communication skills are also introduced to help encourage learners to develop cross-curricular and personal skills. During the second lesson of the week is an opportunity for the teams to share their presentations with the rest of the class. Learners would be asked to think individually of questions to ask the other teams whilst they are presenting. This raised some interesting thoughts and really showed learner engagement/understanding.

My planned assessment points of this project are investigating and analysis/evaluation, which comes from learners being able to select their favourite new and emerging technology, research this and then evaluate the impact that it has on society. If more than three weeks (six lessons) are available then there is a possible chance to explore the concept of design fiction, which is something that I am hoping to do later on in the year. There is also the good opportunity to use films to help introduce this extra element of the project, such as Big Hero 6 and the idea of ‘microbots’, linking to programmable matter! This also provides me with the opportunity of something else to share later in the year.

To access the scheme of work I have produced for this project or if you would like more information, feel free to contact me via twitter @HGowlett_DT or add your comments to this post.

 

Designing a Future Economy; there’s a bigger picture

Today the Design Council Published Designing a Future Economy,

…investigating the skills used in design, the link between these skills and productivity and innovation, and how they align with future demand for skills across the wider UK economy.

It’s an interesting report (well, executive summary; the full report will be released in January) and well worth downloading and reading. It focuses on three areas:

  1. the design skills required across a range of design-related jobs,
  2. the value of design skills in the UK economy,
  3. how design skills are acquired and developed.

It’s the third of these that I want to focus on here.

The report notes the plummeting rate of GCSE D&T entries (see above) and recommends that:

Education providers and regulators embed design in the curriculum:  

The traditional pathways into design careers – such as GCSE Design and Technology – are being eroded. The Department for Education, schools and academies should re-introduce GCSE Design and Technology as a priority subject in post-14 education to secure these skills in the short-term.

Anyone working in D&T education should be pleased that a body with some clout is both highlighting the worrying decline in D&T GCSE entries and banging the drum for D&T to have a higher priority post-14.

But…. I do worry about the constant emphasis on the economic reasons for including D&T in the curriculum. For example, just a few weeks ago, David wrote about a new report from the Institution Of Mechanical Engineers, “We think it is important but we don’t quite know what it is” The culture of engineering in schools; which argued, for economic reasons, that engineering should have a higher profile in schools.

It’s not hard to understand why these organisations focus on the economic justification; that’s where their institutional focus is. But it’s a case that has been being made for D&T for many, many years – years which have seen the subject decline. And I think the argument can be made that this dogged emphasis on the economic purpose of the subject has contributed to this decline.

Why? Well, because it positions D&T, in the minds of many stakeholders, as a vocational subject. This may well not be the intent, but it is the result and it has significant consequences.

In particular, schools, parents and government officials and ministers (etc.) mentally position the subject as ‘not academic’. As a result, in many schools it’s seen as a subject for weaker pupils (you know, it’s practical…).  Even where the powers that be are more enlightened, the fact that it’s not in the EBacc core (because it’s ‘not academic’) makes it very hard to create an options systems that encourages large numbers of pupils to select it. In any case pupils are likely to reason that, unless they have a vocational interest in design, the subject is not for them and many parents ambitions for their children will mean that they view the subject as of less worth, unless they are particularly well-informed.

When David, Nick and I wrote Re-building Design & Technology, we argued that the purpose of the subject needs clarifying and suggested four arguments for the place of D&T in the curriculum:

An economic argument

A steady supply of people who have studied design & technology is essential to maintain and develop the kind of society we value. Design & technology is central to the innovation on which our future economic success as a nation depends. For those young people who achieve a design & technology qualification at school the experience may well predispose some of them to consider a technical career. This is important as our country faces a “STEM skills” gap.

A personal argument

The learning achieved through studying design & technology at school is useful in everyday situations, as it enables young people to deploy design skills and technical problem solving to address and solve practical problems at both the personal and community levels.

A social argument

In their communities, their workplaces, and through the media, people encounter questions and disputes that have matters of design and/or technology at their core. Often these matters are contentious. Significant understanding of design and of technology is needed to reach an informed view on such matters and engage in discussion and debate.

A cultural argument

Technologies and the design thinking behind them are major achievements of our culture. Everyone should be helped to appreciate these, in much the same way that we teach pupils to appreciate literature, art and music.

If the fortunes of D&T are to be restored, then we need to adopt and advance this much wider set of arguments for the subject; they provide a strong foundation for what the Design Council wants; to “re-introduce GCSE Design and Technology as a priority subject in post-14 education” (which, of course, implies it is well-supported pre-14).

As a postscript I should also note what some readers will be screaming at the screen as they peruse this; which is that a supply of quality teachers is the other thing that is required to turn around the fortunes of D&T in schools. These matters are intertwined; its hard to attract good teachers when the subject looks so battered, but it’s hard to make significant change without those good teachers. I wonder if the Design Council and its partners could explore ways to improve the supply of teachers both immediately and in the long-term.

As ever, comments and discussion are welcomed.

The potential for ‘design for good’ in the new D&T GCSE Contextual Challenge

Design activity can inform the development of a wide range of products and services. It does this across different levels of detail: from the positioning and nature of a switch at the level of fine detail to the overall nature and purpose of what is being designed at the grand scale level and for a device that required one or more switches this might be an electrically powered toy. And in most cases the designs operate within complex interacting systems and have to be conceived so that they can do this successfully. In previous GCSE specifications the Awarding Organisations set relatively closed design briefs for candidates to tackle. This led to young people spending much if not most of their designing time making decisions concerned mainly with fine levels of detail. This is not the case for the new specifications which start to be taught this September (2017) for examination in May/June 2019. The Non Examined Assessment or Contextual Challenges will be announced in June 2018 and candidates will spend the autumn and spring terms responding to them. Candidates might still design and make similar products to those they produced in previous specifications but this to my mind would be a lost opportunity. The whole point of the Contextual Challenge is that it requires candidates to explore situations and identify the needs and wants of people in those situations. From this consideration of needs and wants candidates develop their own design briefs to which they then respond through designing and making. This approach gives ownership of the activity to the candidates and enables them to pursue an endeavour which they consider to be worthwhile. Here are some sample Contextual Challenges posted by three Awarding Organisations.

From OCR we have

  • Public Spaces

The sensitive design of public spaces can enhance users’ experiences and interactions with that space. Explore a space in your locality with the view to enhancing the users’ experiences within that space.

  • Security

Theft of people’s personal possessions is a problem in modern society. Explore the role design can play in securing people’s belongings.

  • Dining

Dining can be a wonderful social and cultural experience that does not only focus on the eating of food. Explore the ways design can enhance the experiences for any of the stakeholders involved.

From AQA we have a rather more minimalist approach

  • A high profile sporting event
  • Addressing the needs of the elderly
  • Children’s learning and play

From EdExcel we have

  • Improving living and working
  • Contextual challenges

(a) How can living spaces also be used for a work environment?

(b) How can objects be used for different purposes in a living or working environment?

  • The sporting arena
  • Contextual challenges

(a) How can technology be used to improve a sporting situation?

(b) How can merchandise be used to promote a sporting situation?

  • Expanding human capacity
  • Contextual challenges

(a) How can an aid for people with disabilities improve their capacity to perform a given task?

(b) How can we provide more protection for humans from the environment?

As an aside here we might ask if a more current and relevant contextual challenge would be the reverse?

Before we consider how these might play out in a ‘design for good’ approach it is worth looking briefly at this through the writing of Emily Pilloton. Her book Design Revolution is a clarion call to designers to make the distinction between ‘good design’ and ‘design for good’. To quote Allan Chochinovin writing in the foreword, when you move from good design to design for good ‘the design conversation moves from form, function, beauty and ergonomics to accessibility, affordability, sustainability and social worth.’ Allan is scathingly critical of much design activity, ‘Perhaps the wholesale poisoning of every natural system through industrialisation are “unintended” consequences, but there’s a cruel irony in designers running around, busily creating more and more garbage for our great grandchildren to dig up, breath, and ingest, all the while calling themselves “problem solvers”’. Emily’s book features more than 100 contemporary design products and systems including safer baby bottles, a waterless washing machine, low-cost prosthetics for landmine victims, Braille-based building blocks for blind children, wheelchairs for rugged conditions, sugarcane charcoal, and a universal composting systems. These and all the other items described in the book will make excellent case studies for D&T students on the theme of ‘design for good’.

So if we want our young people to embrace ‘design for good’ how might this play out in their responses to the GCSE Contextual Challenges. In theory all of the challenges identified above could be viewed through the lens of ‘design for good’ but some seem to offer more obvious opportunities than others. First a word of warning, as I explored this issue it became increasingly apparent that some if not most of the suggestions were outside the sorts of outcomes we have come to expect as D&T outcomes. Be that as it may I still think the exploration is worthwhile and in fact may encourage us to widen the scope of what is seen as an acceptable D&T outcome.

  • Consider Public Spaces (from OCR) as an example.

What could be done for a park that was run down and poorly maintained or a piece of uncared for waste ground. Planting a meadow that flowered throughout spring, summer and autumn such that once seeded it would require minimum maintenance, be a joy to behold and adding furniture made from reclaimed materials to enable passers by to sit and enjoy the surroundings would surely be ‘design for good’. And this isn’t simply aesthetic indulgence. Meadows are of ecological importance because they are open, sunny areas that attract and support flora and fauna that could not thrive in other conditions. They often host a multitude of wildlife providing areas for courtship displays, nesting food gathering and sometimes sheltering if the vegetation is high enough. Many meadows support a wide array of wildflowers which makes them of utmost importance to insects like bees and other pollinating insects and hence the entire ecosystem. Clearly there are obstacles to be overcome in negotiating with the local authority and their parks and gardens department but surely worth a try. And how to manage this as part of the NEA? Too big a task for a single student well then, could it be a group project in which several individual students take on different aspects of the challenge? Providing there was sufficient design and make activity for each student this should not be too great a problem. Each candidate would have to be able to demonstrate clearly their own individual involvement, reflections, ideas and outcomes that were not simply using the work/outcomes of the peers they were working with, acknowledging interactions with others as they occur. The group dynamics would need to be good and each student committed to a fair share of the effort, no room for passengers. And as for a busy city street that has existed since Victorian times there would be lots of history to be revealed which could be shown using augmented reality (AR). Developing a series of location specific histories using open source AR software that could be loaded onto a tablet or mobile phone would enhance the experience of users within that space. Would such a digital solution to the challenge count? I asked Jonny Edge of OCR and he gave this useful and considered response.

There would be possibilities and problems in this. If they are simply developing location specific histories that rely on freely available AR software, this is more App development and therefore the domain of Computer Science / ICT. Ideas and potential outcomes would have to be considered against the Marking Criteria. What is the physical 3D ‘final prototype’? If the teacher isn’t mindful then this could be leading candidates into a situation that will disadvantage their assessment. The problem seems to be that there is no physical product unless the learner designs a holder or hand support / glasses / heads up display / special accessory etc. for the tablet/phone. If this was included I see no real problem as long as the right balance is achieved. This could be a series of prototypes, rather than just one. Part of it might be the digital/virtual aspect, but in order to meet the assessment criteria of all boards there would need to be evidence of the use of hand tools, machinery, digital design and digital manufacture. The way the OCR assessment works means that this does not all need to be shown in the making of the final prototype(s). The consideration that a candidate needs to make here is the physical attributes of their design solution. Other solutions/considerations to those given above may be how they are displayed/presented in the location. A criticism of the AR approach to enhancing users’ experience of the space would be that not all users have access to mobile devices and this should be considered as a limitation by the candidate.

 

  • And what about Addressing the needs of the elderly (from AQA)?

There is no doubt that we are living longer and that this is creating problems for our health service. The elderly become infirm and frail and sometimes suffer from dementia. Providing care for the elderly is a problem that is likely to grow (see for example http://www.bbc.co.uk/news/health-40942531) and it is important that young people appreciate this and become engaged with developing solutions. So this is a challenge that has implicit appeal to ‘design for good’. And it is essential that any approach to the elderly treat them with respect and dignity. How might young people tackle this challenge? Visiting and listening to the elderly is surely a first step, perhaps their own family members, perhaps residents in local sheltered housing or care facilities. Simply hearing about their lives now and in the past would provide a wealth of information that could lead to suggestions for the elderly and the young people to consider together. I’m not sure what would come out of such considerations. But then, that’s the point of a Contextual Challenge, you don’t know at the start what you’re going to be designing and making. One idea that might appeal to both young and old alike did occur to me. A treasure box in which an elderly person could keep particularly precious mementos of times past – letters, postcards, photographs, jewellery, medals – which he or she could use as reminders of the past and as stimulus when talking to others about their life. Exactly what such a box would look like would be up to the young and elderly to decide together but there would certainly be lots of opportunity to design and make to an exceptionally high standard.

  • And How can merchandise be used to promote a sporting situation (from EdExcel)?

I must admit my heart did sink a bit on this one; merchandising had the ring of “creating more and more garbage for our great grandchildren to dig up, breath, and ingest” to re-quote Allan Chochinovin. However I know from personal experience that lots of sporting events are linked to charities of considerable worth – fun runs to raise funds to support research into diseases and support for those caring for the ill. So the question for me becomes how might young people re-interpret the idea of memorabilia so that the items designed were not trivia to be discarded after the event. I was drawn to the idea of packets of seeds that could be planted to give various coloured flowers to act as a reminder of the event. This might involve choosing the seeds, ensuring that they do in fact grow well in various conditions, providing instructions for planting and care, developing ‘memorabilia’ pots for the seeds – not typical D&T activities but then perhaps one of the challenges of the Contextual Challenge is that it will broaden what counts as designerly activity in D&T.

Engaging D&T students with ‘design for good’ through the Contextual Challenge will not be easy but is I think worth doing. If we are successful then the results will be plain for all to see and this has the potential to raise the profile and status of the subject with a wide range of stakeholders – parents, SLT, governors, the local community and local businesses. And D&T departments will I believe find allies in this endeavour. Sponsorship from local DIY stores (B&Q), local building supplies (Dewson) local banks (Barclays has several innovation centres) would be possible and desirable. Good PR for the sponsor, the school and the subject. Is this just too idealistic? Well may be, but what’s the point of being a teacher and trying to enable our young people to flourish if we aren’t idealistic? And remember there’s almost a whole academic year to lay the ground for the Contextual Challenge before they are announced.

As always comments welcome, particularly from Awarding Organisations.

  • PS

More can be found out about Emily Pilloton’s work; US based but there are lots of lessons for us in the UK here and from her Ted Talk Teaching design for change

Build, Use, Damage, Mend and Adapt – an approach to learning through and about drones

A guest post by Ed Charlwood

What follows describes the work I’ve been doing in school that has led to me to set up a new Drones in Schools Google+ community for teachers.

A convergence of influences

As with much curriculum development, serendipity did its job at the outset of this endeavour, bringing together the opportunities offered by (1) the new GCSE and A Level specifications and their broader content requirements, (2) a growing dissatisfaction with a certain high-profile external “design / engineering” competition that really requires very little design and (3) the discovery of a very interesting little kit. Firstly, the long-awaited publication of the new GCSE and A Level specifications really was a wake up call that we could not continue to plough the same RM / Product Design furrow at either qualification level. I felt it important to embrace the specification in its entirety and that meant that at Latymer we would have to teach areas that were less familiar i.e. Systems and Control and Textiles. It also meant that we could fully embrace previously fringe areas that we had been pushing at for a few years but had been confined by old assessment criteria, namely the use of CAD, CAM and the circular economy. Secondly, I have seen our students be equally engaged and frustrated with external engineering competitions, they promised a glimpse into the competitive world of high level engineering but actually offered little real decision making, restrictive and difficult manufacturing processes and actually required a lot of luck and frivolous administration. I won’t name names. Lastly I came across a $99 / £78 kit from Flexbot, offering a 3D printable drone and the promise of an open source kit. A quick PayPal purchase later and I was the proud owner of a Flexbot Quadcopter (4 rotors), cleverly packaged, with a comprehensive and appropriate information booklet and a product that worked pretty much straight out for the box and could fly via an iPhone app. Bingo.

Drones are a great ‘hook’ for learning

Drones are popular in the media, comprehensible to most people and on a steep curve of becoming demonstrably better and cheaper at the same time. Currently they have the elusive “engagement factor” and this provides a ‘hook’ making them intrinsically attractive to students. Such a hook is, in my experience, vital. It is important to note that we are not coding experts, nor are we overly interested in programming. But we are interested in using electronics to do stuff. And it is here that the Flexbot Quadcopter meets our teaching intentions.

Our approach

Under the guidance of my colleague Nick Creak we handed the kit over to our students. They assembled the drone without difficulty. Then they had a play, crashed it and naturally broke it. They took the kit apart and made some key measurements, download CAD files from the Flexbot Wiki (SketchUp) and Thingiverse (.stl) and printed a replacement for the part for the one they broke. They then began to explore the files and started to design their own drone. Initially they did this by pretty much by simplifying and copying the existing design, a useful process in its own right to develop CAD techniques and collaborative skills.

A 3D printed Flexbot part

We then printed their chassis designs and used the slicing software to investigate various manufacturing options:

  • How long would the print take if it was “ultimate” or “low” quality?
  • What would happen if it had a low / medium / dense fill?
  • What were the implications of the design being aligned differently?

On average a “normal quality” high density print would take 2 hours. The booklet provided by Flexbot also has some interesting text comparing the economics of 3D printed manufacturing vs mass production techniques like injection moulding.

Students then could begin to design “iteratively” – a new key concept in the OCR interpretation of the new specifications.

“Iterative design is a design methodology based on a cyclic process of prototyping, testing, analysing, and refining a product or process. Based on the results of testing the most recent iteration of a design, changes and refinements are made.”

We also offered a number of design challenges: design a modular drone, alter your design to use as little filament as possible (make it cheap!) or to print as quickly as possible, design your drone to use a standard component – in our case this was a Lego axle.

Flexbot parts

The Flexbot circuit is robust enough to be shared between students and the batteries, propellers and motors are cheap enough to buy in bulk. If you do not have a 3D printer, jobs can be specified, costed and outsourced to a 3D print hub. The simulator (which is available once you have started the process of uploading parts for hub to print) shows it would cost approximately £6 for a basic chassis made from PLA by Fused Deposition Modelling. Some hubs even offer 25% student discount and most do almost next day delivery.

We additionally posed a number of extensions questions to our students, each eliciting a different design outcome: What is the effect of changing the alignment of the rotors? How big/small can the drone be? How much weight can it pick up?

Reflections

Design Decisions Pentagon

David Barlex has produced a design decision pentagon to describe the decisions that students might make when they are designing and making. So I was intrigued to use this to explore the decisions that our students were making.

Clearly they weren’t making any big conceptual decisions – the sort of product had already been decided – a quadcopter drone. The technical decisions in terms of how it would work had also been decided – four electric motors linked to flexbot circuit, controlled by the Bingo app. But there were lots of possibilities in the constructional decision-making.

Not 90°!

One student changed the alignment of the motors so that they were no longer at 90o to one another which made the drone faster but harder to control. And I suppose you could argue that this constructional change did in fact change the way the drone worked. A key feature of the pentagon is that the design decisions featured at each of the vertices aren’t independent of one another hence the lines between the vertices.

Interference fit

Another student responded to the modular challenge producing a design with four separate arms held tightly by an interference fit to the central node, taking advantage of the high degree of dimensional accuracy of additive manufacture. This required investigation and was in itself was a valuable learning experience.

Clearly it’s possible to set particular design challenges around constructional decisions e.g. making it more crash worthy.

Aesthetic decisions could also be made. Indeed changing the alignment of the motors could be seen as an aesthetic as well as a constructional decision. Devising light-weight covers that can be 3D printed or perhaps produced from nets that have been laser cut from thin sheet plastic might give the drone different ‘personalities’ and this may be seen as a marketing decision, changing the appearance to have appeal to different users. Marketing decisions can also be made with regard to how the drone gets to market – via a kit in a shop or on line, or via digital files for home or hub manufacture in collaboration with a circuit board/electrical motor supplier, related to this, deciding whether the product is open source or not is also a marketing decision. And just who the drone is for will make a big difference to what it might look like and additional features. And taking a step back how will the design decisions overall be affected by requiring drones to be part of a circular economy?

There is, of course, a “purer” engineering challenge, to design and make racing drones, where there are already a number of competitions with related rules and constraints.

The next area for us to consider is that of the consequences of drone technology, and its close cousin the Unmanned Aerial Vehicle (UAV) many of which have some more sinister applications; bombing, surveillance and smuggling as a counterbalance to the positive aspects; photography, delivery, surveying etc… each is a rich seam for discussion as well as the wider issues of automation, disruptive technologies generally or government regulation and control.

Far from this being a proprietary endeavour I want this to be a collaborative, open source one, so I invite you to join the Drones in Schools Google+ community to share your experiences, ideas and resources or add your comments to this post.

Ed Charlwood headshotEd Charlwood

Head of Design & Director of Digital Learning at Latymer Upper School, London

I am a passionate advocate of Design education who believes in the power of learning through analysis, designing and making. I am an Apple Distinguished Educator (class of 2013), a Google Certified Teacher (class of 2015) and the DATA Outstanding Newcomer to Design and Technology Award winner (2008), a particular focus of my work is to exemplify the notion that innovative and appropriate use of technology can redefine the traditional teacher-learner relationship and transform educational designing and making experiences. My vision is to inspire and empower students to make the things they imagine.

The Disruptive Technologies and D&T newsletter #2

This is the last time I’ll clog up this blog with stuff about the Disruptive Technologies and D&T newsletter. But just to show it wasn’t a total flash-in-the-pan, the second edition has just been posted

You can sign up for the newsletter and read past issues from the newsletter archive.