Build, Use, Damage, Mend and Adapt – an approach to learning through and about drones

A guest post by Ed Charlwood

What follows describes the work I’ve been doing in school that has led to me to set up a new Drones in Schools Google+ community for teachers.

A convergence of influences

As with much curriculum development, serendipity did its job at the outset of this endeavour, bringing together the opportunities offered by (1) the new GCSE and A Level specifications and their broader content requirements, (2) a growing dissatisfaction with a certain high-profile external “design / engineering” competition that really requires very little design and (3) the discovery of a very interesting little kit. Firstly, the long-awaited publication of the new GCSE and A Level specifications really was a wake up call that we could not continue to plough the same RM / Product Design furrow at either qualification level. I felt it important to embrace the specification in its entirety and that meant that at Latymer we would have to teach areas that were less familiar i.e. Systems and Control and Textiles. It also meant that we could fully embrace previously fringe areas that we had been pushing at for a few years but had been confined by old assessment criteria, namely the use of CAD, CAM and the circular economy. Secondly, I have seen our students be equally engaged and frustrated with external engineering competitions, they promised a glimpse into the competitive world of high level engineering but actually offered little real decision making, restrictive and difficult manufacturing processes and actually required a lot of luck and frivolous administration. I won’t name names. Lastly I came across a $99 / £78 kit from Flexbot, offering a 3D printable drone and the promise of an open source kit. A quick PayPal purchase later and I was the proud owner of a Flexbot Quadcopter (4 rotors), cleverly packaged, with a comprehensive and appropriate information booklet and a product that worked pretty much straight out for the box and could fly via an iPhone app. Bingo.

Drones are a great ‘hook’ for learning

Drones are popular in the media, comprehensible to most people and on a steep curve of becoming demonstrably better and cheaper at the same time. Currently they have the elusive “engagement factor” and this provides a ‘hook’ making them intrinsically attractive to students. Such a hook is, in my experience, vital. It is important to note that we are not coding experts, nor are we overly interested in programming. But we are interested in using electronics to do stuff. And it is here that the Flexbot Quadcopter meets our teaching intentions.

Our approach

Under the guidance of my colleague Nick Creak we handed the kit over to our students. They assembled the drone without difficulty. Then they had a play, crashed it and naturally broke it. They took the kit apart and made some key measurements, download CAD files from the Flexbot Wiki (SketchUp) and Thingiverse (.stl) and printed a replacement for the part for the one they broke. They then began to explore the files and started to design their own drone. Initially they did this by pretty much by simplifying and copying the existing design, a useful process in its own right to develop CAD techniques and collaborative skills.

A 3D printed Flexbot part

We then printed their chassis designs and used the slicing software to investigate various manufacturing options:

  • How long would the print take if it was “ultimate” or “low” quality?
  • What would happen if it had a low / medium / dense fill?
  • What were the implications of the design being aligned differently?

On average a “normal quality” high density print would take 2 hours. The booklet provided by Flexbot also has some interesting text comparing the economics of 3D printed manufacturing vs mass production techniques like injection moulding.

Students then could begin to design “iteratively” – a new key concept in the OCR interpretation of the new specifications.

“Iterative design is a design methodology based on a cyclic process of prototyping, testing, analysing, and refining a product or process. Based on the results of testing the most recent iteration of a design, changes and refinements are made.”

We also offered a number of design challenges: design a modular drone, alter your design to use as little filament as possible (make it cheap!) or to print as quickly as possible, design your drone to use a standard component – in our case this was a Lego axle.

Flexbot parts

The Flexbot circuit is robust enough to be shared between students and the batteries, propellers and motors are cheap enough to buy in bulk. If you do not have a 3D printer, jobs can be specified, costed and outsourced to a 3D print hub. The simulator (which is available once you have started the process of uploading parts for hub to print) shows it would cost approximately £6 for a basic chassis made from PLA by Fused Deposition Modelling. Some hubs even offer 25% student discount and most do almost next day delivery.

We additionally posed a number of extensions questions to our students, each eliciting a different design outcome: What is the effect of changing the alignment of the rotors? How big/small can the drone be? How much weight can it pick up?

Reflections

Design Decisions Pentagon

David Barlex has produced a design decision pentagon to describe the decisions that students might make when they are designing and making. So I was intrigued to use this to explore the decisions that our students were making.

Clearly they weren’t making any big conceptual decisions – the sort of product had already been decided – a quadcopter drone. The technical decisions in terms of how it would work had also been decided – four electric motors linked to flexbot circuit, controlled by the Bingo app. But there were lots of possibilities in the constructional decision-making.

Not 90°!

One student changed the alignment of the motors so that they were no longer at 90o to one another which made the drone faster but harder to control. And I suppose you could argue that this constructional change did in fact change the way the drone worked. A key feature of the pentagon is that the design decisions featured at each of the vertices aren’t independent of one another hence the lines between the vertices.

Interference fit

Another student responded to the modular challenge producing a design with four separate arms held tightly by an interference fit to the central node, taking advantage of the high degree of dimensional accuracy of additive manufacture. This required investigation and was in itself was a valuable learning experience.

Clearly it’s possible to set particular design challenges around constructional decisions e.g. making it more crash worthy.

Aesthetic decisions could also be made. Indeed changing the alignment of the motors could be seen as an aesthetic as well as a constructional decision. Devising light-weight covers that can be 3D printed or perhaps produced from nets that have been laser cut from thin sheet plastic might give the drone different ‘personalities’ and this may be seen as a marketing decision, changing the appearance to have appeal to different users. Marketing decisions can also be made with regard to how the drone gets to market – via a kit in a shop or on line, or via digital files for home or hub manufacture in collaboration with a circuit board/electrical motor supplier, related to this, deciding whether the product is open source or not is also a marketing decision. And just who the drone is for will make a big difference to what it might look like and additional features. And taking a step back how will the design decisions overall be affected by requiring drones to be part of a circular economy?

There is, of course, a “purer” engineering challenge, to design and make racing drones, where there are already a number of competitions with related rules and constraints.

The next area for us to consider is that of the consequences of drone technology, and its close cousin the Unmanned Aerial Vehicle (UAV) many of which have some more sinister applications; bombing, surveillance and smuggling as a counterbalance to the positive aspects; photography, delivery, surveying etc… each is a rich seam for discussion as well as the wider issues of automation, disruptive technologies generally or government regulation and control.

Far from this being a proprietary endeavour I want this to be a collaborative, open source one, so I invite you to join the Drones in Schools Google+ community to share your experiences, ideas and resources or add your comments to this post.

Ed Charlwood headshotEd Charlwood

Head of Design & Director of Digital Learning at Latymer Upper School, London

I am a passionate advocate of Design education who believes in the power of learning through analysis, designing and making. I am an Apple Distinguished Educator (class of 2013), a Google Certified Teacher (class of 2015) and the DATA Outstanding Newcomer to Design and Technology Award winner (2008), a particular focus of my work is to exemplify the notion that innovative and appropriate use of technology can redefine the traditional teacher-learner relationship and transform educational designing and making experiences. My vision is to inspire and empower students to make the things they imagine.

The Disruptive Technologies and D&T newsletter #2

This is the last time I’ll clog up this blog with stuff about the Disruptive Technologies and D&T newsletter. But just to show it wasn’t a total flash-in-the-pan, the second edition has just been posted

You can sign up for the newsletter and read past issues from the newsletter archive.

 

The Disruptive Technologies and D&T newsletter

[Update 15-15-17: the first newsletter has been posted. If you haven’t already signed up for it, you can view it (and choose to subscribe) here.]

Early next week I’ll be launching a newsletter focussed on Disruptive Technologies and D&T. What I want to do here is explain a little bit why I’m starting this and the kind of content that it will contain.

The first edition of the newsletter will be published next week – some of what follows is sampled from it.

You can sign up for the newsletter on the newsletter’s sign up page.

Background

David Barlex and I have been working on a project that focuses on making a range of Disruptive Technologies (DTs) accessible for classroom use and discussion. The DTs we have chosen to emphasise are:

We think these technologies provide a really powerful context to help pupils learn about technological perspective (this idea is developed in our recent Working Paper Big Ideas for D&T), while at the same time introducing pupils to technologies that  are likely to have a significant impact on their adult lives. The DTs we have chosen are at very different levels of development with, for example, additive manufacturing being something that many (most? all?) schools have at least some access to. In contrast, synthetic biology is advancing surprisingly rapidly as a technology in industry but has, so far, made minimal impact in schools and programmable matter remains largely a R&D project in some universities and other research institutes.

We also realise that there are other technologies ‘out there’ that have the potential to be disruptive and, also, that it is possible that some of our nominated DTs may turn out to be more of a disruptive whimper than a bang. That’s future-gazing for you.

This is an ‘in our free time’ project so inevitably develops more slowly than we would like.

However, I read a lot. (Well, David and I both read a lot – but I should probably emphasise that I take responsibility for what appears in this newsletter.) And I’d like to share the fruits of this reading with colleagues in D&T because I realise that not all have the luxury of time that I do to wade through quite a lot of content to find the useful and interesting nuggets.

This is probably my age talking, but Twitter seems to me to be too ephemeral for stuff that might actually be useful (if you’re lucky enough to see it fly by you probably won’t find it again when you need it…). And I don’t want to clog up the blog on our website with this kind of stuff. So, I’m trying out a newsletter for size; it will take at least six months for me to decide whether it is a success or not – and I’ll measure that by how many folk have signed up to it.

Content

I’ve deliberately called this ‘The Disruptive technologies and D&T’ newsletter rather than ‘The Disruptive technologies in D&T’ newsletter as this gives me a bit of elbow room to wander over wider issues related to D&T education. Mostly it will contain links to recently published material on-line with a degree of commentary on each item. I’ll make no attempt to cover every DT every time. And I’ll also mentions books that I’ve read that seem to me to be useful, relevant or interesting. Sometimes they’ll be all three.

My aim is to produce a reasonably (but not too) frequent edition with enough content to be interesting but not overwhelming. I’m thinking that perhaps 3-4 issues a month, during term-time, might be about right, with a slower rate of publication in school holidays. I will rely on feedback from you to tell me whether both the frequency and length are reasonably manageable.

If you think that such a newsletter might be useful, please both sign up to receive it and forward this post on to colleagues and, if you work in ITE in any capacity, to your trainee teachers.


Click to subscribe to the Disruptive Technologies and D&T Newsletter


 

Re-Building D&T v2

Re-Building Design & Technology v2 is now available here. It has been informed by the responses we have had to the first version. We have taken many of these responses into account in rewriting the original eight sections and have introduced a completely new section Re-building – necessary but not sufficient.

Prior to publishing v2 of this document we sought the support of the D&T Association. To this end, we had a very productive meeting with Julie Nugent, the new CEO of the D&T Association and Andy Mitchell, the deputy CEO, at which they welcomed v2 of the Re-building paper and looked forward to working with stakeholders in responding to the recommendations. However we want to reiterate here what the paper says:

Our recommendations all carry implied costs, in some cases relatively modest and in others significant. These costs are beyond the current budget of the Association and it is really important that the whole D&T community works with the Association to help the realisation of these recommendations with both practical and financial support.

If you would like to discuss the provision of either practical or financial support with the D&T Association, you can contact them via their website; we suggest that you mention the Re-Building D&T document and it may be helpful to note that your message is for the attention of Julie Nugent, CEO.

In addition we look forward to receiving any comments you have on v2 and would welcome indications of how you might be using v2 of the document in your school, your initial teacher training or in the provision of CPD.

As ever, you can comment on this post or contact us directly.

Are you using biomimicry in D&T?

A guest post by Rebecca Mallinson

Fish Gill Design used to remove trapped air from water pipelines

Fish Gill Design used to remove trapped air from water pipelines

Biomimicry is the manufacturing of materials that imitate the phenomena of life’s natural processes. From 2014, biomimicry was introduced as a design methodology within the UK Design & Technology curriculum with the aspiration to align the subject more greatly with design outside education.

Burrs are the most widely known biomimic inspiration - responsible for velcro

Burrs are the most widely known biomimic inspiration – responsible for velcro

As an anthropology researcher at the crosshairs of Material & Visual Culture, Sustainability and Education, my interest lies in how this directive is technically interpreted and taught for Key Stage 3 students. How is such a complex subject understood, embraced and employed to create artefacts where ‘thought is made concrete in design’? In abstracting nature’s properties, are we teaching a re-assertion of our own power over it, or fostering an apotropaic (harm-averting) closeness with our increasingly vulnerable environment? Is there an immateriality – a spiritual rather than physical quality – to embedding biomimicry within a design curriculum?

Beijing National Aquatics Centre inspired by bubbles

Beijing National Aquatics Centre inspired by bubbles

I would love to be able to explore this for my masters dissertation at UCL but to do so, I need to find D&T teachers willing to be interviewed. This could be via email/Skype/phone or in person depending on your location.

Anyone is welcome to contribute their perspective whether they have:

  • Embraced this element of the curriculum and found innovative ways to articulate it?
  • Examples to share of how students have employed biomimicry within their artwork from the most mundane to the most spectacular?
  • Experienced creative, strange, fascinated or confused responses from students?
  • Felt skeptical about its inclusion within the curriculum entirely?

If you would like to know more and/or participate, please email Rebecca at rebecca.mallinson.15@ucl.ac.uk before Friday 28th April.

Rebecca MallinsonRebecca Mallinson

Working with the Creative Directors at London College of Fashion, Rebecca has coordinated industry projects with Microsoft, United Nations, SHOWstudio and Cass Art alongside the design/organisation of catwalk and exhibitions. Her previous experience encompasses Research & Policy at the Crafts Council plus supporting researchers at Centre for Sustainable Fashion and Textile Futures Research Centre which each stimulated her interest in the potentials of design embracing natural technologies.

Big Ideas for D&T

When we published the Re-Building Design & Technology Working Paper, one of the core things we suggested was that the D&T community could agree on some Big Ideas that should underpin learning within D&T.

We didn’t think these Big Ideas were particularly radical; they already mostly appear in one form or another in the current KS3 Orders for D&T as well as in the new D&T GCSEs.

We outlined some of the responses to the Re-Building paper in an earlier post, and, as we said there, some correspondents disagreed with the idea of Big Ideas and others felt they’d like to hear more detail on how these Big Ideas had been developed, so that they could understand our argument better.

We agree that this would be helpful and we hope that our second Working paper,  Big Ideas for Design & Technology, serves the purpose of explaining where the Bg Ideas we are advocating have come from.

As ever, we hope this paper will stimulate discussion and we look forward to your comments.

Re-Building D&T

re-buildingOur subject is in the doldrums. The KS3 Programme of Study introduced in 2013, coupled with the new GCSE, offers the possibility of modernisation but the challenges to the subject are much more deep-rooted.

We have identified four core challenges:

  • A lack of agreed epistemology
  • Confusion about purpose
  • Uncertainty about the nature of good practice
  • Erroneous stakeholder perceptions

These have contributed over several decades to a situation where less than 30% of young people now study the subject to 16+.

What can be done to restore design & technology to the grand intentions of the 1989 Parkes Report that heralded its introduction into the National Curriculum?

That’s what this post is all about. David and Torben, working with Nick Givens, have written a paper, Re-building Design & Technology, that explores these four challenges and how they might be tackled.

dsp-collageThe paper contains 12 recommendations for the Design & Technology Association to consider, that we believe build on its existing aims and activities.

The emphasis in these recommendations is on the leadership role of the Association; we are not suggesting in any way that the Association can undertake the role of re-building design & technology alone.

All members of the community of practice along with those who support the subject of design & technology and those in positions of influence over the subject need to understand the key roles of Epistemology, Clarity of purpose, Good practice and Informed stakeholder perception in re-building design & technology as a key part of the school curriculum. All need to work with and in support of the Association in this endeavour.

As always we hope this post will stimulate discussion and we look forward to your comments.

Various versions of the paper, including a print-friendly one (with the large blocks of colour removed) and a version as web pages can be found through our Re-Building D&T page.